108 research outputs found

    Interaction of NO-sensitive guanylyl cyclase with Src-like kinases

    Get PDF
    Poster presentation NO-sensitive guanylyl cyclases (soluble guanylyl cyclase, sGC) are among the key regulators of intracellular cGMP concentration. The mechanisms underlying NO-mediated activation of sGC are quite well understood, however, little is known about the fine-tuning of sGC activity through alternative mechanisms such as protein phosphorylation. Several reports have demonstrated the reversible phosphorylation of sGC on serine/threonine residues, and it has been speculated, though not experimentally proven, that sGC might also be phosphorylated on tyrosine residues. Using broad-spectrum phosphatase inhibitors we were able to demonstrate tyrosine phosphorylation at Tyr192 of the beta 1 subunit of human sGC in COS1 cells. This residue forms part of a sequence segment (YEDL) representing a preferential binding site for SH2 domains of Src-like kinases. Pull-down assays and co-immunoprecipitation experiments showed that Src can indeed bind via its SH2 domain to pTyr192 of beta 1 indicating that tyrosine phosphorylation of sGC may be followed by recruitment of Src-like kinases to the phosphorylated beta 1 subunit. In support of this hypothesis, immunofluorescence studies showed a colocalization of overexpressed sGC and Src at the plasma membrane of COS1 and Hela cells. Together, our results point to an unexpected crosstalk between tyrosine kinase pathway(s) and the NO/cGMP signalling cascade which may result in translocation of the predominantly cytosolic sGC to the cytosolic face of the plasma membrane

    Tyrosine phosphorylation of NO-sensitive guanylyl cyclase

    Get PDF
    Poster presentation: NO-sensitive guanylyl cyclases (GC) are the principal receptors for nitric oxide (NO) and convert GTP into the second messenger cGMP. We showed that GC is prone to tyrosine phosphorylation in COS1 cells overexpressing the human holoenzyme. Similar results were obtained in PC12 cells and in rat aortic tissue slices. The major phosphorylation site was mapped to position 192 in the regulatory domain of the beta1 subunit. Tyrosine phosphorylation of GC was reduced in the presence of the inhibitors PP1 and PP2 indicating that Src-like kinases are critically involved in phosphorylation. Moreover, co-immunoprecipitation experiments revealed an interaction between Src and GC. To further analyse the relevance of this posttranslational modification we generated a phospho-specific antibody raised against pTyr192. This antibody clearly distinguishes between phosphorylated and non-phosphorylated GC and may be a powerful tool to analyse the subcellular localisation of the phosphorylated enzyme

    Co-ordinated stage-dependent enhancement of Plasmodium falciparum antioxidant enzymes and heat shock protein expression in parasites growing in oxidatively stressed or G6PD-deficient red blood cells

    Get PDF
    BACKGROUND: Plasmodium falciparum-parasitized red blood cells (RBCs) are equipped with protective antioxidant enzymes and heat shock proteins (HSPs). The latter are only considered to protect against thermal stress. Important issues are poorly explored: first, it is insufficiently known how both systems are expressed in relation to the parasite developmental stage; secondly, it is unknown whether P. falciparum HSPs are redox-responsive, in view of redox sensitivity of HSP in eukaryotic cells; thirdly, it is poorly known how the antioxidant defense machinery would respond to increased oxidative stress or inhibited antioxidant defense. Those issues are interesting as several antimalarials increase the oxidative stress or block antioxidant defense in the parasitized RBC. In addition, numerous inhibitors of HSPs are currently developed for cancer therapy and might be tested as anti-malarials. Thus, the joint disruption of the parasite antioxidant enzymes/HSP system would interfere with parasite growth and open new perspectives for anti-malaria therapy. METHODS: Stage-dependent mRNA expression of ten representative P. falciparum antioxidant enzymes and hsp60/70-2/70-3/75/90 was studied by quantitative real-time RT-PCR in parasites growing in normal RBCs, in RBCs oxidatively-stressed by moderate H2O2 generation and in G6PD-deficient RBCs. Protein expression of antioxidant enzymes was assayed by Western blotting. The pentosephosphate-pathway flux was measured in isolated parasites after Sendai-virus lysis of RBC membrane. RESULTS: In parasites growing in normal RBCs, mRNA expression of antioxidant enzymes and HSPs displayed co-ordinated stage-dependent modulation, being low at ring, highest at early trophozoite and again very low at schizont stage. Additional exogenous oxidative stress or growth in antioxidant blunted G6PD-deficient RBCs indicated remarkable flexibility of both systems, manifested by enhanced, co-ordinated mRNA expression of antioxidant enzymes and HSPs. Protein expression of antioxidant enzymes was also increased in oxidatively-stressed trophozoites. CONCLUSION: Results indicated that mRNA expression of parasite antioxidant enzymes and HSPs was co-ordinated and stage-dependent. Secondly, both systems were redox-responsive and showed remarkably increased and co-ordinated expression in oxidatively-stressed parasites and in parasites growing in antioxidant blunted G6PD-deficient RBCs. Lastly, as important anti-malarials either increase oxidant stress or impair antioxidant defense, results may encourage the inclusion of anti-HSP molecules in anti-malarial combined drugs

    Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    Get PDF
    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes

    Structural and biochemical characterization of a mitochondrial peroxiredoxin from Plasmodium falciparum

    Get PDF
    Plasmodium falciparum possesses a single mitochondrion with a functional electron transport chain. During respiration, reactive oxygen species are generated that need to be removed to protect the organelle from oxidative damage. In the absence of catalase and glutathione peroxidase, the parasites rely primarily on peroxiredoxin-linked systems for protection. We have analysed the biochemical and structural features of the mitochondrial peroxiredoxin and thioredoxin of P. falciparum. The mitochondrial localization of both proteins was confirmed by expressing green fluorescent protein fusions in parasite erythrocytic stages. Recombinant protein was kinetically characterized using the cytosolic and the mitochondrial thioredoxin (PfTrx1 and PfTrx2 respectively). The peroxiredoxin clearly preferred PfTrx2 to PfTrx1 as a reducing partner, reflected by the K(M) values of 11.6 μM and 130.4 μM respectively. Substitution of the two dyads asparagine-62/tyrosine-63 and phenylalanine-139/alanine-140 residues by aspartate-phenylalaine and valine-serine, respectively, reduced the K(M) for Trx1 but had no effect on the K(M) of Trx2 suggesting some role for these residues in the discrimination between the two substrates. Solution studies suggest that the protein exists primarily in a homodecameric form. The crystal structure of the mitochondrial peroxiredoxin reveals a fold typical of the 2-Cys class peroxiredoxins and a dimeric form with an intermolecular disulphide bridge between Cys67 and Cys187. These results show that the mitochondrial peroxiredoxin of P. falciparum occurs in both dimeric and decameric forms when purified under non-reducing conditions

    The Plasmodium falciparum, Nima-related kinase Pfnek-4: a marker for asexual parasites committed to sexual differentiation

    Get PDF
    <b>Background</b> Malaria parasites undergo, in the vertebrate host, a developmental switch from asexual replication to sexual differentiation leading to the formation of gametocytes, the only form able to survive in the mosquito vector. Regulation of the onset of the sexual phase remains largely unknown and represents an important gap in the understanding of the parasite's complex biology. <b>Methods:</b> The expression and function of the Nima-related kinase Pfnek-4 during the early sexual development of the human malaria parasite Plasmodium falciparum were investigated, using three types of transgenic Plasmodium falciparum 3D7 lines: (i) episomally expressing a Pfnek-4-GFP fusion protein under the control of its cognate pfnek-4 promoter; (ii) episomally expressing negative or positive selectable markers, yeast cytosine deaminase-uridyl phosphoribosyl transferase, or human dihydrofolate reductase, under the control of the pfnek-4 promoter; and (iii) lacking a functional pfnek-4 gene. Parasite transfectants were analysed by fluorescence microscopy and flow cytometry. In vitro growth rate and gametocyte formation were determined by Giemsa-stained blood smears. <b>Results:</b> The Pfnek-4-GFP protein was found to be expressed in stage II to V gametocytes and, unexpectedly, in a subset of asexual-stage parasites undergoing schizogony. Culture conditions stimulating gametocyte formation resulted in significant increase of this schizont subpopulation. Moreover, sorted asexual parasites expressing the Pfnek-4-GFP protein displayed elevated gametocyte formation when returned to in vitro culture in presence of fresh red blood cells, when compared to GFP- parasites from the same initial population. Negative selection of asexual parasites expressing pfnek-4 showed a marginal reduction in growth rate, whereas positive selection caused a marked reduction in parasitaemia, but was not sufficient to completely abolish proliferation. Pfnek-4- clones are not affected in their asexual growth and produced normal numbers of stage V gametocytes. <b>Conclusions:</b> The results indicate that Pfnek-4 is not strictly gametocyte-specific, and is expressed in a small subset of asexual parasites displaying high rate conversion to sexual development. Pfnek-4 is not required for erythrocytic schizogony and gametocytogenesis. This is the first study to report the use of a molecular marker for the sorting of sexually-committed schizont stage P. falciparum parasites, which opens the way to molecular characterization of this pre-differentiated subpopulation

    Nitric oxide-independent vasodilator rescues heme-oxidized soluble guanylate cyclase from proteosomal degradation

    Get PDF
    Background: Nitric oxide (NO) is an essential vasodilator. In vascular diseases, oxidative stress attenuates NO signaling by both chemical scavenging of free NO and oxidation and down-regulation of its major intracellular receptor, the alpha/beta heterodimeric heme-containing soluble guanylate cyclase (sGC). Oxidation can also induce loss of sGC's heme and responsiveness to NO. Results: sGC activators such as BAY 58-2667 bind to oxidized/heme-free sGC and reactivate the enzyme to exert disease-specific vasodilation. Here we show that oxidation-induced down-regulation of sGC protein extends to isolated blood vessels. Mechanistically, degradation was triggered through sGC ubiquitination and proteasomal degradation. The heme-binding site ligand, BAY 58-2667, prevented sGC ubiquitination and stabilized both alpha and beta subunits. Conclusion: Collectively, our data establish oxidation-ubiquitination of sGC as a modulator of NO/cGMP signaling and point to a new mechanism of action for sGC activating vasodilators by stabilizing their receptor, oxidized/heme-free sGC
    corecore